
www.manaraa.com

ED 303 359

AUTHOR
TITLE
SPONS AGENCY
PUB DATE
GRANT
NOTE

PUB TYPE

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

SE 050 345

Gimmestad, Beverly; And Others
A Potpourri of Pascal Programs.

National Science Foundation, Washington, D.C.
88

NSF-DPE-8470653

37p.; From a summer workshop entitled "Copper Country
Mathematics and Computer Science Teachers Workshop."
Drawings may not reproduce well.

Guides - Classroom Use - Guides (For Teachers) (052)
-- Computer Programs (101)

MF01/PCO2 Plus Postage.

*Computer Graphics; *Computer Software; High Schools;
Mathematical Applications; *Mathematical Enrichment;
Mathematical Logic; Mathematics Materials;
Mathematics Skills; *Mathematics Teachers;
*Programing Languages; *Secondary School
Mathematics

IDENTIFIERS IBM PC XT; 'PASCAL Programing Language

ABSTRACT

This is a collection of Pascal programs that were
developed for a 1986 National Science Foundation-sponsored high

school teachers' summer workshop. The programs can be used as a means
of extending or enriching textbook material in either high school
mathematics or Pascal courses. Some suggested uses are: (1) teacher
demonstrations in mathematics classes; (2) programs for student use
in mathematics classes; and (3) student assignments in a mathematics
or Pascal course. The topics which are addressed in the Pascal
programs come from a variety of mathematical areas: algebra,
trigonometry, discrete mathematics, number theory, mathematical
modeling, and numerical algorithms. Generally speaking, the programs
are quite short and the programming level is appropriate for the
average high school student who is enrolled in a Pascal course or who
has completed such a course. The appendix contains standard types and
procedures used by graphics programs written for use with Turbo
Pascal on the IBM PC, including Cleargraphics, Graphicson,
Graphicsoff, Plotpoint, Smoothplot, Drawline, PlotGeneral,
DrawlineUeneral, DrawCircleGeneral, plotaxes, ConvertToPolar, and
Rotate. (YP)

Reproductfons supplied by EDRS are the best that can be made
from the original :ocument.

www.manaraa.com

A POTPOURRI OF PASCAL PROGRAMS

Beverly Gimmestad
Department of Mathematics
Michigan Technological University
Houghton, Michigan 49931

Randolph M. Odendahl
Computer Science Department
State University of New York at Oswego
Oswego, New York 13126

Lynn R. Ziegler
Department of Computer Science
Michigan Technological University
Houghton, Michigan 49931

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Beverly Gimmestad

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

U $ DEPARTMENT Of EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RFSOURCES INFORMATION
KCE JTER (ERIC)

This document has been reproduced as
received from the person or organitation
originating it

0 Minor changes have been made to improve
reproduction quality

Points of yew or opinions stated in this docu-
ment do not necessarily represent official
OERI position or policy

This material is based upon work supported by the National Sci-
ence Foundation undlr Grant No. DPE 8470653. Any opinions,
findings, and conclusions or recommendations exprPssed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

The Grant supported a summer workshop entitled "Copper
Country Mathematics and Computer Science Teachers
Workshop".

2

www.manaraa.com

TABLE OF CONTENTS

Introduction..-........--_ WO...MN.

Algebra Programs
1

BinomialSquares - go eeeee et 1

Mixture...00 so 2

Rectangle949400M 6000 0000..0 so 4
Shipping........---...... . ---.......... 6

Trigonometry Program
VariableSine Curve .--........----........... _... 8

Discrete Mathematics Programs
Factorial and Recursive Factorial-.-.....---..............-.---..-...--. -.-- .. 10

Fibonacciand recursive Fibonacci---.......---------..........-....... 11

ComputingPowers 00. ern so OM N. woe.* wpm so 12

Number Theory Prograras
PrintModular Numbers---- 13

Wondrous.------- - --. -- --- so 0.0 MOOG 14

Mathematical Modeling Programs
ExpGrowth------...... --.-------- -..----...- 15

Prey-Predator -----.. ------- OOOOO -----..........---...........------- 16

Buffalo Simulation . .. 17
Falling Bodies 20

Numerical Algorithms
MonteCarlo---.-.--- -.-......--.-.- 23

MinimizeArea_M...-- IN......... . OM IN*............. a.. 25

Bisection .- 26
Bibliography - -------- 29

Appendix - Graphics Procedures
Cleargraphics.... - -----....- 30Graphicson- -----.. - 30
Graphics() ff 30
Plotpoint 31

Smoothplot 31

Drawl ine 32
PlotGeneral 33

DrawlineGeneral . 33

DrawCircleGeneral 33
plotaxes 34

Cony ertToPola r .. 34

Rotate ***W..*** MI. Se 34

www.manaraa.com

1

A Potpourri of Pascal Programs Page 1

Introduction

A Potpourri of Pascal Programs is a collection of Pascal programs that were developed for an
NSF high school teacher's workshop which was held in the summer of 1986. Some of the programs
are standard examples in computer science and no source is indicated for these programs. Other pro-
grams were taken from published literature and, in these cases, the original source is indicated. Most of
the published programs were written in BASIC and translated by us into Pascal. The remaining pro-
grams represent original work by either the workshop staff or by the workshop participants. The
appropriate author is indicated for these programs. Some of the original programs utilize graphics pro-
cedures which are given in the appendix and were written by Dr. Ziegler.

The programs can be used as a means of extending or enriching textbook material in either high
school mathematics or Pascal courses. Some suggested uses are:
(1) teacher demonstrations in mathematics classes

(2) programs for student use in mathematics classes

(3) student assignments in a mathematics or Pascal course.

The topics which are addressed in the Pascal programs come from a variety of mathematical
areas: algebra, trigonometry, discrete mathematics, number theory, mathemativl modeling and numeri-
cal algorithms. Generally speaking, the programs are quite short and the programming level is appropri-
ate for the average high school student who is enrolled in a Pascal course or who has completed such a
course.

ALGEBRA PROGRAMS

These programs deal with topics in high school algebra courses.

ALGEBRA PROGRAM 1: Binomial Squares.

AUTHOR: Lynn R. Ziegler

OBJECT To dispel an incorrect notion which students often hold about a binomial
square.

e.g. (x +2)2 * x2 + 4 but (x+2)2 = x2 + 4x +4

Listing of Binomial Squares Program

program binomialSquare(input, output);

var x: integer;

begin { binomialSquare}
writeln(Ist,' X (X+2)"2 r2+4 r2+4X+4');
writeln(Ist,' ');
for x:- -5 to 5 do

writein(Ist,x:2,sqr(x+2):9,
(sqr(x)+4):7,

(sqr(x)+4*x+4):10);
end. { binomialSquare}

4

www.manaraa.com

A Potpourri of Pascal Programs Page 2

Sample Output

X (X+2)^2 r2+4 r2+4X44

.5 9 29 9
-4 4 20 4
-3 1 13 1

-2 0 8 0
-1 1 5 1

0 4 4 4
1 9 5 9
2 16 8 16
3 25 13 25
4 36 20 36
5 49 29 49

ALGEBRA PROGRAM 2: Mixture

AUTHOR: Randy Odendahl (based on an idea in the 1984 NCTM Yearbook, page
187)

Object To compute the cost of a mixture resulting from various proportions of two
different coffees. (This is an extension of the probl .o. usually solved in algebra).

Typical problem: If Coffee Type I costs $4.00 /lb and Coffee Type II costs $5.40/1b,
how many ounces of Coffee I and how many ounces of Coffee II should you combine
to make a mixture selling for $4.35/lb?

[Typel] [Type 11] [Mixture]
x oz 16-x oz 16 oz

$4.00 $5.40 $4.35(16-x) = 16x +
16 16 16

4.00 x + 86.40 - 5.40 x = 69.60

-1.40 x = -16.80

-16.80x = - 12 oz
-1.40

5

www.manaraa.com

A Potpourri of Pascal Programs Page 3

Natural Extension: What would be the cost/lb for various proportions of the two
different coffees?

4.00 x + 5.40 (16-x) = 16 MIX

MIX = 4.00 x + 5.40 (16-x)
16

4 5.
16

4MIX =
16

x + (16-x)

Listing of Mixture Program

program mixture;

{mixture computes cost of mixture resulting from
various proportions of two different coffees.}

var coffeel: integer; .

begin
writeln(Ist,'COFFEE I COFFEE II Cost/pound');
writeln(Ist,' ');
for coffee1:- 0 to 16 do

writeln(I st, coffe e 1:5,(16- coffee 1):10,
((4.0/16.0)*coffeel+
(5.4/ 16.0)4(16-coffee1)):13: 2);

end.

Sample Output

COFFEE I COFFEE II Cost/pound

0 16 5.40
1 15 5.31
2 14 5.22
3 13 5.14
4 12 5.05
5 11 4.96
6 10 4.87
7 9 4.79
8 8 4.70
9 7 4.61
10 6 4.52
11 5 4.44
12 4 4.35
13 3 4.26
14 2 4.17
15 1 4.09
16 0 4.00

6

www.manaraa.com

A Potpourri of Pascal Programs Page 4

ALGEBRA PROGRAM 3: Rectangle

AUTHOR: Bruce Carlson - Dollar Bay High School, Dollar Bay, Michigan 49922

OBJECT Compute the width and area of a rectangle given the perimeter and length.

Listing of Rectangle Program

program rectangle(input,output);

{This program is designed to tell a person what the width and area of a
rectangle would be given the perimeter and length.}

var length,width,perimeter,arerseal;

procedure findwidth(perimeter,length:real);
begin {findwidth}

width:(perimeter/2)-length;
end; {findwidth}

procedure findarea (length,width:real);
begin { findarea}

area:.length*width;
end; { findarea}

begin {rectangle};
clrscr;
writeln ('This exercise is designed to give you the width and the area of ',

'a rectangle once you have decided upon a perimeter and length.');
writeln;
writeln('Try to get the largest area for a given perimeter by changing the length.');
writeln;
writeln('What is the perimeter that you would like?) It must be positive.');
readin (perimeter);
writeln('What is the length that you would like?');
readin(length);
writeln;
if ((length<(perimeter/2.0)) and (length>0.0)) then begin

findwidth(perimeter, length);
writeln('The width of your rectangle is ',width:20:4);
writeln;
findarea(length,width);
writeln('The area of your rectangle is length times width or', area:20:4);
writeln;
writeln('Write the perimeter, length, width and area on a sheet of paper.');
writeln;
writeln('Try different lengths without changing the perimeter.');
writeln;
writeln('What happens to your area as your length and width become',

' closer to each other?');
writeln;
writeln('Press the run key (R) before trying a new length.');
end {if}

7

www.manaraa.com

A Potpourri of Pvscal Programs Page 5

else begin
writeln('THINK! Your head is not just a hair farm.');
writeln('Did you choose a POSMVE PERIMETER?');
writeln('Also, you must choose a positive length that is less than',

' one-half of the 1);
writeln('perimeter that you choose. Do you know why?');
writeln;
writelneNow press the run key(R) and try again.');

end;{if-then-else}
end.{rectangle}

Sample Output

This exercise is designed to give you the width and the area of a rectangle once
you have decided upon a perimeter and length.

Try to get the largest area for a given perimeter by changing thelength.

What is the perimeter that you would like?) It must be positive.
14

What is the length that you would like?
8

THINK! Your head is not just a hair farm.
Did you choose a POSITIVE PERIMETER?
Also, you must choose a positive length that is less than one-half of the
perimeter that you choose. Do you know why?

Now press the run key(R) and try again.

>I'

This exercise is designed to give you the width and the area of a rectangle once
you have decided upon a perimeter and length.

Try to get the largest area for a given perimeter by changing thelength.

What is the perimeter that you would like?) It must be positive.
14

What is the length that you wou!d like?
4

The width of your rectangle is 3.0000
The area of your rectangle is length times width or 12.0000

Write the perimeter, length, width and area on a sheet of paper.

Try different lengths without changing the perimeter.

What happens to your area as your length and width become closer to each other?

Press the run key (R) before trying a new length.

O

www.manaraa.com

A Potpourri of Pascal Programs

AL(EBRA PROGRAM 4: Shipping

AUTHOR: J. Bugni, L'Anse High School, L'Anse, Michigan 49946

Page 6

OBJECT Determines if UPS will ship your package given its width, height, and
depth.

Listing of Shipping Program

{ Shipping program by J. Bugni, L'Anse High School }

program shipping (input,output);

{This propogram determines if UPS will ship your package}

var w,h,d,total:real;

{function upFmeasure finds the sum of the girth and length of a package.}

function upsmeasure (w,h,d:real): re:31;
{function upsmeasure will find the gulf' of a package and add to this
number the length of the package}

var 1,g1,g2,g3,girth:real;

begin {upsmeasure}
1...w;
if h>1 then 1:=h;
if d>1 then 1:=o;

gl:=2*w+2*h;
g2:=2*h+2*d;
g3:=2*w+2*d;

girth...g1;
if g2<girth then girth:-g2;
if g3<girth then girtlr..g3;

upsmeasure:-girth+1;
end; { upsmeasure t

begin {shipping}

write ('enter the width of your package > ');
readln (w);
writeln;
writeln;
write ('enter the height of your package > ');
readln (h);
writeln;
writeln;
write('enter the depth of your package > ');
readln (d);

9

www.manaraa.com

A Potpourri of Pascal Programs Page 7

writeln;
writeln;
total: - upsmeasure (w,h,d);
if total>108 then write ('sorry your package is unacceptable')
else begin

write ('we are happy to send your package');
writeln;
writeln;
writeln (' hint:stand your package up so that the longest side is');
writeln('the vertical side, and put the label on the top!!!');

end; {else}
end. {shippittg}

Sample Output

Running
enter the width of your package > 5

enter the height of your package > 12

enter the depth of your package > 9

we are happy to send your package

hint:stand your package up so that the longest side is
the vertical side, and put the label on the top!!!

Running
enter the width of your package > 45

enter the height of your package > 45

enter the depth of your package > 45

sorry your package is una:ctntable

10

www.manaraa.com

A Potpourri of Pascal Programs

TRIGONOMETRY PROGRAMS

TRIGONOMETRY PROGRAM 1: Variable Sine Curve

AUTHOR: W. Gaffney, Hancock Public Schools, Hancock, Michigan 49930

Page 8

OBJECT To change amplitude and period and graphically display a phase shifted sine
curve.

Listing of Variable Sine Curve Program

program variablesinecurve;

(NSF CLASS PROJECT----W. GAFFNEY)
(This program allows you to change the amplitude and period
and cause a phase shift of the standard sine curve)

var ijimeger;
k,r,a,b,c:real;

($igraphics)
{Sigraphics.two}

begin

writeln('THIS PROGRAM ALLOWS YOU TO CHANGE THE AMPLITUDE',
' AND PERIOD');

writeln('ALONG WITH A PHASE SHIFT OF THE STANDARD',
' SINE CURVE');

writeln(' Y.aSIN(bX+c));
writeln('THE VALUE OF a WILL DETERMINE THE AMPLITUDE');
writeln('THE VALUE OF b WILL DETERMINE THE PERIOD');
writeln('THE VALUE OF c WILL CAUSE A PHASE SHIFT');
writeln('THE STANDARD CURVE HAS a-I, bi.1, c -0 AND IS',

' SHOWN IN RED.');

writeln('INPUT THE VALUE OF a');
readln(a);
if (a>2.5) or (a<-2.5) then begin

writeln('value of a must be in the range of -2.5 to 2.5');
readln(a);

end; { if}

writeln('INPUT THE VALUE OF b');
readln(b);

writeln('INPUT THE VALUE OF c');
readln(c);

1 1

www.manaraa.com

A Potpourri of Pascal Programs Page 9

graphicson;
cleargraphicc;

(plot thd axes)
for i:.0 to max do plotgeneral (000,0,319,0,199,1);
for i:-0 to max do plotgeneral (160,i3O,319,0,100,1);

for i:-0 to 639 do begin
cipi/180;

(plot the standard curve)

k:.-40sin(1.12r)+100;
plotgeneral(i,k,0,639,0,199,2);

(plot the variable curve)

k:-040ssin((b,1.12sr)+c)+100;
plotgeneral (i,k,0,639,0,199,3);

end;
delay(10000);
graphicsoff;

end.

Sample Output

Running
THIS PROGRAM ALLOWS YOU TO CHANGE THE AMPLITUDE AND PERIOD
ALONG WITH A PHASE SHIFT OF THE STANDARD SINE CURVE
Y- aSIN(bX+c)
THE VALUE OF a WILL DETERMINE THE AMPLITUDE
THE VALUE OF b WILL DETERMINE THE PERIOD
TFIE VALUE OF c WILL CAUSE A PHASE SHIFT
THE STANDARD CURVE HAS a-1, b-1, c-O AND IS SHOWN IN RED.
INPUT THE VALUE OF a
2
INPUT THE VALUE OF b
1

INPUT THE VALUE OF c
5

12

www.manaraa.com

A Potpourri of Pascal Programs Page 10

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS PROGRAM 1: Factorial and Recursive Factorial,

AUTHOR: Randy Ciendahl

OBJ:1CT To contrast the use of an iterative algorithm with the use of a recursive
algorid.rit for generating n!.

Listing of nonrecursive factorial:

program factorial(input,output);
var i: integer;

n: real;
begin {factorial}

writeln(lst,'What number would you like the factorial of?');
readln(n);
write(lst,round(n):1,' factorial is ');
for i:. round(n) downto 2 Jo

ie n*(i-1);
writeln(Ist,n:20:0);

end. {factorial}

Listing of recursive factorial:

program recursiveFactorial(input,output);
Val'

n:integer;

function factorial(n: integer): real;
begin {factorial}

if n -0 then factorial:- 1
else factorial:- n*factorial(n-t)

end; {factorial}

begin {execute recursiveFactorial}
writeln(Ist,'What number would you like ',

'the factorial of?');
readln(n);
writeln(output,n:1,' factorial is ',factorial(n):20:0);

end. cecute recursiveFactorial}

Listing of sample output:

What number would you like the factorial of?
17

17 factorial is 568742809600

13

www.manaraa.com

A Potpourri of Pascal Programs Page 11

DISCRETE MATHEMATICS PROGRAM 2: Fibonacci & Recursive Fibonacci

AUTHOR: Randy Odendahl

OBJECT To contrast the use of an iterative algorithm with the use of a recursive
algorithm for generating Fibonacci numbers.

Listing of nonrecursive Fibonacci:

program Fibonacci;
{Fibonacci prints out the first 20 Fibonacci numbers.}

var al,a2,a3,i: integer;
begin {Fibonacci}

al:- 1; a2:- 1;
writeln(lst,' i ith Fibonacci');
writeln(lst,'
writeln(lst,1:2,a1:10):
writeln(1st,2:2,a2:10);
for 1:- 3 to 20 do begin

a3:- al +a2;
writeln(lst,i:2,a3:10);
al:- a2;
a2:- a3;

end {for};
end {Fibonacci}.

Listing of recursive Fibonacci:

program recursiveFibonacci;
var i: integer;

function Fibonacci(n: integer): integer;
begin {Fibonacci}

if (n-1) or (n-2) then Fibonacci:- 1
else Fibonacci:- Fibonacci(n-1)+Fibonacci(n-2);

e-i; {Fibonacci}

begin {recursiveFibonacci}
writeln(lst,' i ith Fibonacci');
writeln(lst,' ');
for i:- 1 to 20 do writeln (lst,i:2,Fibonacci(i):10);

end. {recursiveFibonacci}

Listing of sample output:

i ith Fibonacci

1 1 15 610
2 1 16 987
3 2 17 1597
4 3 18 2584
5 5 19 4181

20 6765

14

www.manaraa.com

A Potpourri of Pascal Programs

DISCRETE MATHEMATICS PROGRAM 3: Computing powers.

AUTHOR: Lynn R. Ziegler

Page 12

OBJECT To show a different type of recursive function. (In this case, one useful for
computing integer powers of real numbers - x". It works by using the observation
that x2 A = (xy and x2A+1 =x (xy.)

Listing of recursivePower:

program recursivePower(input,output);

var x:reai;
n:integer;

function power(x:real; n:integer) : real;
var temp:real;
begin {power}

if n-0 then power-1
else begin

temp:-power(x,n div 2);
if (n mod 2) - 0 then power -sqr(temp)
else power-sqr(temp) *x

end {if then else}
end; {power}

begin {recursivePower}
writeln('Enter x and n ');
readln(x,n);
witein(x:8:2,' to the',

n:3,'th power is ',
power(x,n):18:1)

end. {recursivePower}

Sample Output:

Enter x and n
2.0 50

2.00 to the 50th power is 1125899906842620.0

15

www.manaraa.com

A Potpourri of Pascal Programs Page 13

NUMBER THEORY

NUMBER THEORY PROGRAM 1: Printmod

AUTHOR: Lynn R. Ziegler

OBJECT To print the first 100 counting numbers modulo the integer Input by the
user.

Listing of Printmod:

program printmod(input,output);
{printmods outputs the first 100 counting numbers modulo the
integer input by the program's user.}

var ij: integer;
begin

writeln(lst,'The first 100 counting numbers ',
'in modular arithmetic');

writeln(lst,' ,
,

');
writeln(ist,'Please enter an integer for the modulus:');
readln(j);
writeln(lst);
writeln(lst,' n ',' n mod 'j:1);
wrtteln(lst,' - ',' -- - - - - -')
fce i:. 1 to 100 do

writeln(ist,i:4,(i mod j):4)
end.

,-4rT;;..."*... Output:

a II , 1.-r$4. ' ..10 counting numbers in modular arithmetic

IY:-,.:sc enter an integer for the modulus:

n n mod 6
...

1 1 93 3
2 2 94 4
3 3 95 5
4, 4 96 0
5 5 97 1

6 0 98 2
7 1 99 3
8 2 100 4

www.manaraa.com

A Potpourri of Pascal Programs Page 14

NUMBER THEORY PROGRAM 2: Wondrous

SOURCE: [Milligan), p. 99 translated to Pascal by Randy Odendahl

OBJECT To determine if a given number is "wondrous". Begin with a whole
number. If odd, multiply by 3 and add 1. If even divide by 2. If repeated applica-
tion of this procedure yields 1 then the original number is called "wondrous". If the
given number is not wondrous then the program never halts.

For example, if we start with 102:

102/2-61 61*3+1.184 184/2-92 92/2-46 4612-23
23413+1-70
4/2-2 2/2-1 (after 20..steps)

Listing of Wondrous

program wondrous(input,output);
var iterationCount,candidate,temp: integer;

done: boolean;
begin

done:- false;
while not done do begin

writeln(lst,'Please enter number to be tested,',
' or enter 0 to stop.');

read(candidate);
if candidate<>0 then begin

iterationCount:- 0;
temp:- candidate;
while tempol do begin

if odd(temp) then begin
iterationCount:- iterationCount +1;
temp:- temp*3 +1;

end (if odd };
iteradonCount:- iterationCount +1;
temp: temp div 2;

end {while };
writeln(lst,iteradonCount,' iterations were ',

'needed to make ',candidate,' wondrous.');
end (if candidate}

else done:- true;
end (while not done };

end.

Listing of sample output:

Please enter number to be tested or enter 0 to stop.
102
20 iterations were needed to make 102 v,ondrous.
Please enter number to be tested or enter 0 to stop.
0

www.manaraa.com

A Potpourri of Pascal Programs

MATHEMATICAL MODELLING

MATHEMATICAL MODELLING PROGRAM 1: ExpGrowth

AUTHORS: Beverly Gimmestad and Randy Odendahl

Page IS

OBJECT Model growth of the US population from 1790-1970 using the exponential
function P (t) = 3.929 e.°29655'. Population estimates are printed at ten-year intervals.

Listing of ExpGrowth:

program expGrowth(input,output);

const baseYear- 1790;
stopYear- 1970;

var elapsedTime : integer;
begin

writeln(lst,'YEAR POPULATION(millions)');
elapsedTime:- 0;
repeat

writeln (lst,baseYear+elapsedTime:4,
3.929*exp(0.029655*elapsedTime):15:3);

elapsedTime:- elapsedTime +10;
until ((baseYear +elapsedTime) > stopYear);

cad.

Sample Output:

YEAR POPULATION(millions)
1790 3.929
1800 5.285
1810 7.110
1820 9.564
1830 12.866
1840 17.307
1850 23.282
1860 31.319
1870 42.131
1880 56.675
1890 76.240
1900 102.559
1910 137.963
1920 185.589
1'430 249.656
1940 335.840
1950 451.775
1960 607.733
1970 817.528

18

www.manaraa.com

A Potpourri of Pascal Programs Page 16

MATHEMATICAL MODELLING PROGRAM 2: Prey-Predator

SOURCE: [Wapner], pp. 137-8 translated into Turbo Pascal by Randy Odendahl.

OBJECT Present a mathematical model describing the population of rabbits (r) and
the population of wolves (w) using difference equations. (See The Mathematics
Teacher, February 1984, 137 -138.)

Note: For the differential equaions approach see Kemeny and Snell's Mathematical
Models in the Social Sciences. Blaisdell Publishing Co, 1962.

In the absence of wolves the population of rabbbits would grow at a rate proportional
to its size (At =a r,a > 0). In the absence of rabbits, the population of wolves
would die at a rate proportional to its size (Aw = dw,d> 0). When the two popu-
lations interact, the population of rabbits will be decreased by a term proportional to
the number of kills and the population of wolves will be increased by a term propor-
tional to the number of kills. The number of kills will vary jointly as r and w.

Ar = a r brw
Aw =crw dw where a, b, c, d > 0

Listing of preypredator:

program preypredator(input,output);

{delta r - ar-brw, delta w- crw-dw.
the values of a,b,c,and d given in the data
statement below will give an equilibrium
point at 300 rabbits and 200 wolves}

const a-0.04; b-0.0002; c- 0.0001; d-0.03;
var r,w:real;

t: integer;
begin { preypredator}

writeln(Ist,'Enter initial number of rabbits',
' and wolves');

read(input,r,w);
writeln(lst,' 25 year period rabbits wolves');
writeln(lst);
writeln(lst,round(r):7, round(w):7);
for t:- 1 to 1000 do begin

r:- r +(a*r -b*r*w);
w:- w + (c *r *w -d"w);
if t mod 25 . 0 then

writeln(Ist,(t div 25):8,round(r):12,round(w):7);
end;

end. { preypredator}

www.manaraa.com

A Potpourri of Pascal Programs

Sample Output:

Enter initial number of rabbits and wolves
350 120

Page 17

25 year period rabbits wolves ...
1 350 120 22 211 130
2 482 163 23 313 117
3 464 262 24 451 145
4 284 314 25 494 232
5 179 256 26 333 313
6 162 183 27 197 278
7 201 134 28 161 201
8 294 117 29 185 145
9 431 137 30 263 119
10 502 216 31 392 127
11 362 308 32 502 188
12 210 288 33 415 290
13 162 212 34 241 304
14 178 151 35 167 233
15 248 120 36 168 165
16 371 123 37 223 126
17 494 174 38 332 118
18 441 277 39 469 154
19 261 310 40 481 248
20 172 245 41 306 314
21 165 173

MATHEMATICAL MODELING PROGRAM 3: Buffalo Simulation

SOURCE: Dwayne Channeell and Christian Hirsch, "Computer Methods for Problem
Solving in Secondary School Mathematics", 1984 SCTM Yearbook, pp. 178-181. (See
Bibliography for a full reference for the yearbook.)

Translated to Pascal by Randy Odendahl.

OBJECT The object of this program is to develop a mathematical equation which can
predict buffalo herd size over the next ten years, based upon knowledge of the current
number of adult males, adult females, male calves, and female calves.

Note: It was desired to have a harvesting policy which would not actually endanger
the buffalo population and this program was developed to assist in the formulation of
such a policy.

2, 0

www.manaraa.com

A Potpourri of Pascal Programs Page 18

Listing of Buffalo Simulation

program BuffaloSimulation(input,output);
vas

{SIMULATION VARIABLES}
adultMales,adultFemales,maleCalves,femaleCalves,
babyMales,babyFemales,yearlingMales,yearlingFemales,
herdSize: real;

year: integer;

{TEMPORARY STORAGE DURING CALCULATIONS}
tAdultMaks,tAdultFemales,tBabyMales,tBabyFemales,
tYearlingMales ,tYearlingFemales: real;

{FORMATTING VARIABLES}
i: integer;

begin
writeln(lst,'Enter number of adult males');
readln(adultMales);
writeln(lst,round(adultMales):1);
writeln(lst,'Enter number of adult females');
readln(adultFemales);
writeln(lst,round(adultFernales):1);
writeln(lst,'Enter number of male calves');
readln(maleCalves,
writeln(lst,roundiaaleCalves):1);
writeln(lst,'Enter number of female calves');
readln(femaleCalves);
writeln(lst,round(femaleCalves):1);

{MODEL ASSUMES TWO-THIRDS OF CALVES ARE NEWBORN
ONE -THIRD 1 YEAR OLD}

babyMales:- 2.0/3.0smaleCalves;
yearlingMales:- maleCalves-babyMales;
babyFemales:- 2.0/3.0femaleCalves;
yearlingFemales:- femaleCalves-babyFemales;

writeln(lst); writeln(lst,' BUFFALO POPULATION DISTRIBUTION');
writeln(Ist,' HERD' :6,' ADULT':10,' ADULT' :10,'MALE' :10,'FEMALE':10);
writeln(lst,'SrZE':6,'MALES':10,'FEMALES':10,'CALVES':10,'CALVES ':10);
for I:- 1 to 50 do

write(lst,' -');
writeln(lst);

21

www.manaraa.com

A Potpou:ri of Pascal Programs Page 19

(BEGIN SIMULATION}
for year:- 1 to 11 do begin

(COMPUTE HERD DISTRIBUTION FOR EACH YEAR}
herdSize:- adultMales+adultFemales+babyMales+babyFemales+

yearlingMales+yearlingFemales;
writeln(Ist,round(herdSize:6,

round(adultMales):10, round(aduitFemales):10,
round(babyMales+yearlingMales):10,
round(babyFemales+yearlingFemales):10);

(CALCULATE NEW DENSITIES}
tAdultMales:. adultMales;
tAdultFernales:. adultFemales;
tBabyMales:- babyMales;
tBabyFemides:- babyFemales;
tYearlingMales:- yearlingMales;
tYearlingFemales:- yearlingFemales;
aclultMales:. 0.9*tAdultMales +0.6*tYearlingMales -1000;
adultFemales:- 0.9*tAdultFernales +0.6*tYearlingFemales;
babyMales:- 0.4841AdultFemales;
babyFemales:- 0.42*tAdultFemales;
yearlingMales:- 0.5*tBabyMales;
yearlingFemales :- 0.5*tBabyFentales;
end [foci;

end. (program buffaloSimulation}

Sample output:

Enter number of adult males
10400
Enter number of adult females
9100
Enter number of male calves
3380
Enter number of female calves
3120

BUFFALO POPULATION DISTRIBUTION
HERD ADULT ADULT MALE FEMALE
SIZE MALES FEMALES CALVES CALVES

26000 10400 9100 3380 3120
28207 9036 8814 5495 4862
28393 7808 8557 6415 5613
27853 7338 8848 6223 5445
27760 6873 9073 6300 5513
27810 6418 9244 6479 5669
27888 6050 9435 6615 5788
28037 5752 9634 6747 5904
28260 5508 9836 6889 6028
28544 5316 10041 7033 6154
28885 5171 10251 7180 6283

www.manaraa.com

A Potpourri of Pascal Programs

MATHEMACIAL MODELLING PROGRAM 4: Falling Bodies

AUTHOR: Ernest Mattson, Ironwood Area Schools, Ironwood, Michigan 49938

OBJECT Model the behavior of falling bodies according to Newton's law.

Listing of Falling Bodies

Page 20

PROGRAM FALLINGBODIES (INPUT,OUTPUT);

{THIS PROGRAM WILL FIND THE DISTANCE THAT A FREELY
FALLING BODY WILL FALL IN THE TIME PERIOD YOU
SPECIFY. IT WILL MAKE A CHART OF THE COMPUTED
VALUES AND DRAW THEIR GRAPH. YOU MUST ENTER THE
BEGINNING AND ENDING TIMES AS REAL NUMBERS EQUAL
TO OR GREATER THAN ZERO. WHEN YOU ENTER A
BEGINNING NUMBER GREATER THAN ZERO THE COMPUTED
VALUES AND THE GRAPH WILL SHOW THE INTERVAL OF TIME
THAT YOU ENTERED AND THE CORRESPONDING DISTANCES.}

CONST G-9.8;
VAR S:REAL; T:REAL; T2:REAL;

LAST:REAL;
DELTAT:REAL;

{SIGRAPMCS.PAS}
{SIGRAPHICS.TWO}

PROCEDURE PRCDRW (X0,Y0,X1,Y1,COLOR:INTEGER);

VAR SLOPE:REAL;
X,Y:INTEGER;

BEGIN
IF (X1<>X0) THEN BEGIN

SLOPE:-(Y1-Y0)/(X1-X0);
IF (X1>X0)THEN BEGIN

FOR X:-X1 DOWNTO XO DO BEGIN
PLOTPOINT (X,ROUND(SLOPE*(X-X1)+Y1),COLOR);

END; (*FOR*)
END (*IF *)

ELSE IF (X0>X1)THEN BEGIN
FOR X:-X0 DOWNTO X1 DO BEGIN

PLOTPOINT (X,ROUND (SLOPE*(X-X0)+YO),COLOR);
END; (*FOR*)

END; (*ELSE*)
END (*IF *)

.,3

www.manaraa.com

A Potpourri of Pascal Programs Page 21

ELSE IF (Y0>Y1) THEN BEGIN
FOR Y: -YO DOWNTO Y1 DO BEGIN

PLOTPOINT (X0,Y,COLOR);
END (*FOR*)
END (*IF*)

ELSE BEGUN
FOR Y:Y1 DOWNTO YO DO BEGIN

PLOTPOINT (X0,Y,COLOR);
END (*FOR*)

END(*IF THEN ELSE*)
END;

BEGIN

WRITELN(OUTPUT,'ENTER THE BEGINNING TIME.');
WRITELN(OUTPUT,' IT MUST BE A REAL NUMBER GREATER THAN',

'OR EQUAL TO ZERO.');
READLN (T2);
WRITELN(OUTPUT,'ENTER THE TOTAL TIME THAT THE OBJECT',

' FALLS.');
WRITELN(OUTPUT,'THIS VALUE MUST BE GREATER THAN THE',

' BEGINNING TIME.'):
READLN (1. AST);
WRITELN(OUTPUT,'ENTER THE INTERVAL YOU WANT THE TIME',

' TO BE DIVIDED BY.');
WRITELN(OUTPUT,'USE A DECIMAL TO REPRESENT A FRACTIONAL',

' PART OF A SECOND.');
READLN (DELTAT);
WRITELN(OUTPUT,'TIME DISTANCE');
T:T2;
WHILE (T<LAST) DO BEGIN

S:-(G*T*T)/2;
WRITELN(OUTPUT,T: 10:4,S:10:4) ;
T:T+DELTAT;

END;(*WHILE*)
READLN;
WRITELN(OUTPUT,'IF YOU WOULD PLEASE WAIT I ',

'WILL TRY TO DRAW A GRAPH OF THESE VALUES.');
DELAY(2000);
T:T2;
GRAPHICSON;
CLEARGRAPHICS;
PRCDRW(0,0,XMAX,0,1);
PRCDRW(0,0,0,YMAX,1);
WHILE(T<-LAST) DO BEGIN

S:-(G*T*1)/2;
PLOTGENERAL (T,S,0.0,LAST,0.0,(G*LAST*LAST) /2,1);
T:T+DELTAT;

END;(*WHILE*)
READLN;
GRAPHICSOFF;

END.

4e 4

www.manaraa.com

A Potpourri of Pascal Programs Page 22

Sample Output

Running
ENTER THE BEGINNING TIME.
IT MUST BE A REAL NUMBER GREATER THAN OR EQUAL TO ZERO
0.0
ENTER THE TOTAL TIME THAT THE OBJECT FALLS
THIS VALUE MUST BE GREATER THAN THE BEGINNING TIME.
1.0
ENTER THE INTERVAL YOU WANT THE TIME TO BE DIVIDED BY.
USE A DECIMAL TO REPRESENT A FRACTIONAL PART OF A SECOND.
0.01
TIME DISTANCE

0.0000 0.0000
0.0100 0.0005
0.0200 0.0020
0.0300 0.0044
0.0400 0.0078
0.0500 0.0123
0.0600 0.0176
0.0700 0.0240
0.0800 0.0314
0.0900 0.C397
0.1000 0.0490

0.9000 3.9690
0.9100 4.0577
0.9200 4.1474
0.9300 4.2380
0.9400 4.3296
0.9500 4.4223
0.9600 4.5158
0.9700 4.6104
0.9800 4.7060
3.9900 4.8025

. '.
...".

.........""

25 0

www.manaraa.com

A Potpourri of Pascal Programs Page 23

NUMERICAL PROGRAMS

NUMERICAL PROGRAM 1: Monte Carlo Area

AUTHOR: Randy Odendahl

OBJECT To use a Monte Carlo method to estimate the area of a circle. This is done
by using the monitor screen (size 310 by 200 64000 square pixels) and a circle of
radius 100 on the screen. x is chosen uniformly between 0 and 319 and y is chosen
uniformly between 0 and 199. Then if we repeat this count 20000 times we see that

Arciofci = _Dots in circle Dots in circle
Area of screen TotalDots 21A00

in circleArea of circle = Dots
20000

* Area of screen

is n circleArea of circle = Dot
2

* 64000
0000

Therefore, Area of circle = 3.2 * Dots in circle

Listing of monteCarloArea:

program monteCarloArea;
{monteCarloArea uses Monte Carlo methods
to estimate the area of a circle.}

{$Ib:graphics.pas} {See appendix for a listing of graphics.pas}

const
xcenter 320;
ycenter 100;
radius. 100;
totalCount. 20000;

var
x,y: real;
insideCount: integer;
i: integer;

begin
randomize; clearGraphics; graphicsOn;
insideCount. 0;

for i: 1 to totalCount do begin
x: random(xmax);
y:. random(ymax);
if ((sqr(x-xcenter)+sqr(y-ycenter))

< sqr(radius)) then begin
insideCount. insideCount +1;
plotPoinground(x),round(y),1);

end {if};
end {for};

www.manaraa.com

A Potpourri of Pascal Programs Page 24

delay(10000);
graphicsOff;
writeln(oulPut,'There were ',insideCount 1,

' points inside the circle and');
writeln(output,",totalCount-insideCount):1,

' points outside');
writeln(output,'The estimated area of the circle',

' is ',((1.0insideCamt/totalCount)
(1.0xmaxyiniut)):1:2);

writeln(output,'The actual area is 1,pisqr(radius):1:2);
end.

Listing of sample output:

There were 10028 points inside the circle
and 9972 points outside.

The estimated area of the circle is 32089.60
The actual area is 31415.93

27

www.manaraa.com

A Potpourri of Pas41 Programs Page 2S

NUMERICAL PROGRAM 2: Minimize area.

SOURCE: Dwayne Channel and Christian Hirsch, "Computr Methods for Problem
Solving in Secondary School Mathematics", 1984 NCTM Yearbook, pp. 174-175.
(See Bibliography for a full reference for the Yearbook.)

Translated into Pascal by Randy Odendahl.

OBJECT To investigate the optimal radius and height of a cylindrical container of
fixed volume to minimize its surface area.

V = xr2h
Write h and Surface 1 as functions of V and r.

h = V

?CT2

S = 2Itr h + 2:tr2 = 2 nr (h + r)

Listing of minimizeArea:

program minimizeArea(input,output);
const pi=3.1415926;

var radius, height, surfaceArea, deltaRadius, volume: real;
totalTrials, trial: integer;

begin {minimizeArea}
volume:-236.0; radius:-0.5; deltaRadius:.0.5; totalTrials:-20;
writeln(output,'Program to investigate optimal dimensions to minimize ');
writeln(output,'surface area of a cylindrical container of fixed volume ');
writeln;
writeln(output,'Enter fixe' volume of the cylinder.');
writeln(output,volume:5:1);
writeln(output,'Enter initial length of radius.');
writeln(output,radius:3:1);
writeln(output,'Enter increment for radius.');
writeln(output,deltaRadius:3: 1);
writeln(output,'Enter number of trials to investigate.');
writeln(output,totalTrials);
writeln(output,' VOLUME ',volume:1:2,' TRIALS - ' ,totalTrials: 1);
writeln(output,' RADIUS HEIGHT SURFACE AREA');
writeln(etitput,'

for trial:- 1 to totalTrials do begin
height:- volume/(pi*sqr(radius));
surfaceArea:- 2*pisradius*(height + radius);
writeln(oT;ut,radius:10:2,height:10:2,surfaceArea:15:2);
radius: radius +deltaRadius;
end (for}

end. {minimizeArea}

r 8

www.manaraa.com

A Potpourri of Pascal Programs

Sample output:

Program to investigate optimal dimensions to minimize
surf3ce area of a cylindrical container of fixed volume.

Enter fixed volume of the cylinder.
236.0
Enter initial length of radius.
0.5
Enter increment for radius.
1.0
Enter number of trials to investigate.
10
VOLUME - 236.00 TRIALS .20
RADIUS HEIGHT SURFACE AREA

...ft...10W.10. PPP 10W..........ft
0.50 300.48 945.57
1.50 33.39 328.80
2.50 12.02 228.07
3.50 6.13 211.83
4.50 3.71 232.12
5.50 2.48 275.88
6.50 1.78 338.08
7.50 1.34 416.36
8.50 1.04 509.49
9.50 0.83 616.74

NUMERICAL PROGRAM 3: Bisection

AUTHOR: Lynn R. Ziegler

Page 26

OBJECT The following program is a graphics program to graphically show how the
method of bisection can be used to find a zero of a function. In our case the function
is y =2-e" in the range 05x51. We expect to find the root at In(2)-0.6931472....

Bisection works by evaluating the function at the ends of a i interval where the func-
tion has different signs (positive at one end, negative at the other). The function is
then evaluated at the midpoint of that interval. If the functioa is zero the root is found;
if positive, the new interval will be between the midpoint any du. end having a nega-
tive functional value; if negative, the new interval will be between the midpoint and
the end having a positive functional value. This is continued, shrinking the interval of
interest until it becomes smaller than some tolerance. Then the root is at the middle
of the small interval remaining plus or minus half that tolerance.

This program does the bisection graphically, showing the intervals on screen as higher
and higher "walls" closing in on the root.

4r 9

www.manaraa.com

. .
A Potpourri of Pascal Programs Page 27

Listing of Program Bisection

program bisection(input,output);

{Sigraphics.pas} {These two statements include some graphics routine*
{SIgraphics.two} {needed to run the program in Turbo Pas 4a1 on an IBM PC}

{Listings of them can be found in the arirendix.}

coast xmin-0.0;
ymin--2.0;
xlarge-1.0;
ylarge-2.0;

var x,loweruppermid,dotreal;
signlow,kinteger;

function f(x:real):real;
{This function will be used in the bisection to
compute values for finding the solution of fix)-0}

begin {f}
f:.2.0-exp(x)

end; {I}

function sign(y:real):integer;
begin {sign}

if (y-0.0) then sign:-0
else if (y<0.0) then sign:--1
else sign:-1

end; {sign}

begin {bisection}
graphicson;
plotaxes(xmin,xlarge,yrnin,ylarge,1):
x: -xmin;
while(x<-xlarge) do begin

plotgeneral(x,f(x),xmin,xlarge,
ymin,ylarge,1);

x:-x+0.0016
end;
dot: -0.0; lower. -0.0; upper:-1.0;
signlow:-sign(f(0.0));
while((upper-lower) > 0.01) do besin

mid: - (upper +lower) /2.0;
dot-dot+0.15;
if sign(f(mid)) -0 then begin

lower-mid;
upper-mid;
drawlinegeneral(xmin,dot,lower,dot,xmin,

xlarge,Yrnin,ylarge,1);
drawlinegenerahupper,0.0,upper,dot,xmin,

xlarge,ymin,ylarge, l)
end {if}

30

www.manaraa.com

A Potpourri of Pascal Programs Page 28

else if (sign(f(mid)).signlow) then begin
lower:-mid;
drawlinegeneral(xmin,dot,lower,dot,xmin,

xlarge,)miin,ylarge,1);
drawlinegeneral(lower,0.0,lower,dot,xmin,

xlarge,ymin,ylarge, l)
end

else begin
upper-mid;
drawlinegeneral(upper,dot,xlarge,dot,xmin,

xlarge,ymin,ylarge,1);
drawlinegeneral(upper,0.0,upper,dot,xmin,

xlarge,yrnin,ylarge,l)
end

end; f :,nel
writeln('The lower x,y pair is: ',

lower:8:3,f(lower):8:3);
writeln('The upper x,y pail is: ',

upper.8:3,f(upper):8:3);
delay(5000);
graphicsoff

end. (bisect)

Sample Output

"he lower x, y pair is :The upper x, y pair is : 1:111 IBM

1 1

31

www.manaraa.com

A Potpourri of Pascal Programs Page 29

BIBLIOGRAPHY

Frauenthal, James C., Introduction to Population Modeling Newton, Mass.: EDC/Project UMAP,
1978.

Hoffman, Dale T., Monte Carlo: The Use of Random Digits to Simulate Experiments Newton,
Mass.: EDC/Project UMAP, 1978.

Milligan, W. Lloyd, "Wondrous Numbers and Other Divisors", Creative Computing 11 (April 1985),
99-101.

National Council of Teachers of Mathematics 1984 Yearbook, Computers in Mathematics Education
edited by Viggo P. Hansen and Marilyn J. Zweng. Reston, Va: NCTM, 1984.

Wapner, Leonard M., "Modeling with Difference Equations: Two Examples", Mathematics Teacher
77 (Feb. 1984), 136-140.

52

www.manaraa.com

A Potpourri of Pascal Programs Page 30

Appendix

Graphics Procedures

AUTHOR: Lynn Zieglcr

This appendix contains standard types and procedures used by graphics programs written for use with
Turbo Pascal on the IBM PC. Similar programs were written for use with Turbo Pascal on Apple II
computers with CP/M boards. Copies of either the IBM or Apple routines are available on request.

The following are the constants, types, and routines in the file "GRAPHICS.PAS" which is included in
many of the above sample programs.

const
xmax=319;
ymax=199;
pi = 3.1415926535;

type
xvalue=0..xmax;
yvalue=0..ymax;
functionarray=array[0..xmax] of yvalue;

procedure cleargraphics;
begin {cleargraphics}

graphcolormode;
end; {cleargraphics}

procedure graphicson;
{This procedure prepares the system for use of graphics.}

begin {graphicson}
graphcolormode;

end; {graphicson}

procedure graphicsoff;
{This procedure restores normal text mode.}

begin {graphicsoff}
Texunode(bw80)

end; {graphicsoff}

53

www.manaraa.com

A Potpourri of Pascal Programs Page 31

procedure plotpobu(x,y,color : integer);
{This procedure plots a point at coordinates x,y on the screen. If color
is 0 the background will be plotted. Otherwise white will be plotted.}

var xtemp : xvalue;
ytemp : yvalue;

begin {plotpoint}
if ((0<-x) and (x < -xmax) and (O< -y) and (y<-ymax)) then begin

xtemp:- abs(x) mod (xmax+1);
ytemp: -ymax - (abs(y) mod (ymax+1));
plot(xtemp,ytemp,color)

end {if}
end; {plotpoint}

procedure smoothplot(f : functionarray; color : integer);
{This procedure accepts an array f of xmax integers in the range 0 to ymax and
plots them on the screen. It assumes the integers represent a continuous
function so it smooths vertical jumps as much as it can.}

var i,j,mid : integer;

begin {smoothplot}
plot(0,f10],color);
for i:-1 to xmax do begin

{Is there a jump where the current value is more than one dot
above the previous value? If so, plot the vertical values to
fill in between the two points.}

if f[i]>f[i-1]+1 then begin
mid:-(f[i-1]+f[i]) div 2;
fr t j:- f[i -l] to mid do plotpoint(i-1,j,color);
for j : -f[i] downto (mid +l) do plotpoint(ij,color)
end {if}

{Perhaps there is a jump down at least two dots? If so, fill in
the vertical values as above.}

else if f[i]<t{i-1]-1 then begin
mid:-(f[i-1]+flip div 2;
for j:-f[i-l] downto (mid +l) do plotpoint(i-1,j,color);
for j:-f[i] to mid do plotpoint(i,j,color)
end {elseif}

{Maybe no jump occurs. Then just plot the point.}
else plotpoingi,f[i],color)

end {for}
end; {smoothplot}

54

www.manaraa.com

A Potpourri of Pascal Programs Page 32

The following are the constants, types, and routines in the file "GRAPHICS.TWO" which is included in
many of the above sample programs.

tYPe
arrayofreals-array[1..120) of real;

procedure drawline(x0,y0,x1,y1,color : integer);

{This procedure draws a line between the points (x0,y0) and (xl,yl) with shade
color. The screen has coordinates 0 to ymax from bottom of screen to top of
screen and 0 to xmax from left to right: The drawline uses full screen
density and plots nice dense lines by checking slopes.)

var
x,y : integer;
slope : real;

begin {drawline}

if (x0 -xl) then {Vertical lines are plotted by simply changing y
and plotting the same x value (x0) at all points.}

if (y0<y1) then
for y:-y0 to yl do plotpoint(x0,y,color)

else
for y:-y0 downto yl do plotpoint(x0,y,color)

else begin {Non vertical lines are plotted here.}
slope :- (yl- y0)/(x 1 -x0);
if (abs(slope)<-1.0) then {Small slopes are handled by varying

x and computing appropriate y values.}
if (xOcxl) then

for x:-x0 to xl do
plotpoint(x,round(slope*(x-x0)+y0),color)

else
for x:-x0 downto xl do

plotpoint(x,round(slope*(x-x0)+y0),color)
else begin {Large slopes are handled by thinking of x

as a function of y, varying y, and then
computing the proper x values.}

slope:-1.0/slope;
if (yOcyl) then

for y:-y0 to yl do
plotpoint(round(slope*(y-y0)+x0),y,color)

else
for y:-y0 downto yl do

plotpoint(round(slope*(y-y0)+x0),y,color)
end {if-then-else}

end {if-then-else}
end; {drawline}

5 5

www.manaraa.com

A Potpourri of Pascal Programs Page 33

procedure plotgeneral(x,y,xmin,xlarge,ymin,ylarge : real; color : integer);
(This procedure plots a point at position (x,y) in the coordinate system which
places xmin as the leftmost x value, xlarge as the rightmost x value, ymin as
the bottom y value, and ylarge as the top y value. It is potted in shade
color. It uses proportions and the specified values for standard screen
coordinates (i.e., standard coordinates are x values 0 to xmax from left to
right and 0 to ymax fr7m bottom to top).}

begin {plotgeneral}
plotpoint(mund((x-xminy(xlarge-mnin) *xmax),

round((y-ymn)/(ylarge-ymin) *ytnsut), color)
end; {plotgeneral}

procedure drawlinegeneral(x0,y0,x1,y1,xmin,xlarge,ymin,ylarge : real;
color : integer);

{drawlinegeneral O.Aws a line between (x0,y0) and (xl,y1) in the coordinate
system running from xmin at left to xlarge at right and ymin at bottom and
ylarge at top. It works by converting the points (x0,y0) and (xl,y1) to
standard screen coordinates and then calling procedure drawline.}

Val'

xfactor,yfactor : real;

begin {drawlinegeneral}
xfactorxmax/(xlarge-xmin);
yfactor:ymax/(ylarge-yinin);
drawline(round((x0-xmin)*xfactor),round((y0-ymin)*yfa ...tor),

round((xl-xmin)*xfwtor),round((yl-ym in)* yfactor),color)
end; {drawlinegeneral}

procedure drawcirclegenerafixcenter,ycenter,radius : real;
xmin,xlarge,ymm,ylarge : real; color : integer);

{This procedure draws a circle centered at (xcenter,ycenter) of radius radius.
The circle is in relative coordinate system xmin left to xlarge right and ymin
bottom to ylarge top. The circle is drawn by using polar coordinates centered
at (xcenter,ycenter). The relative number of points is proportional to the
"normalized" radius and the number of points on the screens perimeter.}

var
theta,deltatheta : real;

begin {drawcirclegeneral}
then: -0.0;
deltatheta:2.0*(xlarge-xmin+ylarge-yminyradiusi(xmax+ymax);
while (theta<.2.0*pi) do begin

plotgeneral(xcenter+radiuscos(theta),ycenter+radiussin(theta),
xmin,xlarge,ymin,ylarge,color);

theta:- theta+deltatheta
end {while}

end; { drawcirclegeneral}

www.manaraa.com

M

A Potpourr± of Pascal Programs Page 34

procedure plotaxes(xmin,xlarge,ymin,ylarge:real; color:integer);

{This procedure draws x and y axes through the origin (0,0) in the coordinate
system defined by xmin left to xlarge right, ymin bottom to ylarge top in
shade color. It converts to standard screen coordinates to draw the line.}

begin {plotaxes}

drawlinegeneral(0.0,ymin,0.0,ylarge,xmin,xlarge,ymin,ylarge,color);
drawlinegeneral(xmin,0.0,xlarge,0.0,xmin,xlarge,ymin,ylarge,color)

end; {plotaxes}

procedure ConvertToPolar(x,y,xcenter,ycenter.real; var radius,theta:real);

{This procedure converts the point (x,y) to its representatioa in polar
coordinates via the pair (radius,theta). The polar coordinates are with
reference to axes through (xcenter,ycenter). Standard transformations are
used for computing both radius and theta.)

begin (ConvertToPolar}
radius:-sqn(sqr(x-xcenter)+sqr(y-yc.enter));
if x-xcenter then

if y>ycenter then theta: -pi/2
else theta: -1.5 pi

else if x>xcenter then theta:-arctanay-ycentery(x-xcenter))
else theta:-arctanay-ycenter)/(x-xcenter))4:pi

end; {ConvertToPolar}

procedure Rotate(var x,y:arrayofreals; theta:real;
numberofpoints:integer; xcenter,ycenter:real);

{This procedure causes the numberofpoints points (x[i],y{i)) in the arrays x
and y to be rotated by angle theta with respect to axes intersecting at
(xcenter,ycenter). Contents of arrays x and y will be changed.}

var
i : integer;
radius,theta0 : real;

begin {Rotate}
for i:-1 to numberofpoints do begin

ConvertToPolar(x[iLy[i],xc.enter,ycenter,radius,theta0);
x{i}:-xcenter+radiusscos(theta0+theta);
y[i}:-ycenter+radiusssin(theta0+theta)

end {for}
end; {Rotate}

